Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Front Genet ; 15: 1355962, 2024.
Article in English | MEDLINE | ID: mdl-38425716

ABSTRACT

Classic galactosemia (CG, OMIM #230400, ORPHA: 79,239) is a hereditary disorder of galactose metabolism that, despite treatment with galactose restriction, affects brain function in 85% of the patients. Problems with cognitive function, neuropsychological/social emotional difficulties, neurological symptoms, and abnormalities in neuroimaging and electrophysiological assessments are frequently reported in this group of patients, with an enormous individual variability. In this review, we describe the role of impaired galactose metabolism on brain dysfunction based on state of the art knowledge. Several proposed disease mechanisms are discussed, as well as the time of damage and potential treatment options. Furthermore, we combine data from longitudinal, cross-sectional and retrospective studies with the observations of specialist teams treating this disease to depict the brain disease course over time. Based on current data and insights, the majority of patients do not exhibit cognitive decline. A subset of patients, often with early onset cerebral and cerebellar volume loss, can nevertheless experience neurological worsening. While a large number of patients with CG suffer from anxiety and depression, the increased complaints about memory loss, anxiety and depression at an older age are likely multifactorial in origin.

2.
Cell Rep ; 43(1): 113622, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38159274

ABSTRACT

While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing. Pseudotime analysis revealed that activation of A-T microglia preceded upregulation of apoptosis-related genes in granule and Purkinje neurons and that microglia exhibited increased neurotoxic cytokine signaling to granule and Purkinje neurons in A-T. To confirm these findings experimentally, we performed transcriptomic profiling of A-T induced pluripotent stem cell (iPSC)-derived microglia, which revealed cell-intrinsic microglial activation of cytokine production and innate immune response pathways compared to controls. Furthermore, A-T microglia co-culture with either control or A-T iPSC-derived neurons was sufficient to induce cytotoxicity. Taken together, these studies reveal that cell-intrinsic microglial activation may promote neurodegeneration in A-T.


Subject(s)
Ataxia Telangiectasia , Humans , Ataxia Telangiectasia/genetics , Microglia/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Neurons/metabolism , Cytokines/metabolism
3.
Mol Genet Metab ; 140(3): 107693, 2023 11.
Article in English | MEDLINE | ID: mdl-37716025

ABSTRACT

Newborn screening (NBS) began a revolution in the management of biochemical genetic diseases, greatly increasing the number of patients for whom dietary therapy would be beneficial in preventing complications in phenylketonuria as well as in a few similar disorders. The advent of next generation sequencing and expansion of NBS have markedly increased the number of biochemical genetic diseases as well as the number of patients identified each year. With the avalanche of new and proposed therapies, a second wave of options for the treatment of biochemical genetic disorders has emerged. These therapies range from simple substrate reduction to enzyme replacement, and now ex vivo gene therapy with autologous cell transplantation. In some instances, it may be optimal to introduce nucleic acid therapy during the prenatal period to avoid fetopathy. However, as with any new therapy, complications may occur. It is important for physicians and other caregivers, along with ethicists, to determine what new therapies might be beneficial to the patient, and which therapies have to be avoided for those individuals who have less severe problems and for which standard treatments are available. The purpose of this review is to discuss the "Standard" treatment plans that have been in place for many years and to identify the newest and upcoming therapies, to assist the physician and other healthcare workers in making the right decisions regarding the initiation of both the "Standard" and new therapies. We have utilized several diseases to illustrate the applications of these different modalities and discussed for which disorders they may be suitable. The future is bright, but optimal care of the patient, including and especially the newborn infant, requires a deep knowledge of the disease process and careful consideration of the necessary treatment plan, not just based on the different genetic defects but also with regards to different variants within a gene itself.


Subject(s)
Metabolism, Inborn Errors , Phenylketonurias , Infant, Newborn , Infant , Pregnancy , Female , Humans , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/therapy , Metabolism, Inborn Errors/diagnosis , Neonatal Screening , Phenylketonurias/genetics , Phenylketonurias/therapy , Molecular Biology , High-Throughput Nucleotide Sequencing
4.
Hum Reprod Update ; 29(2): 246-258, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36512573

ABSTRACT

BACKGROUND: Hypergonadotropic hypogonadism is a burdensome complication of classic galactosemia (CG), an inborn error of galactose metabolism that invariably affects female patients. Since its recognition in 1979, data have become available regarding the clinical spectrum, and the impact on fertility. Many women have been counseled for infertility and the majority never try to conceive, yet spontaneous pregnancies can occur. Onset and mechanism of damage have not been elucidated, yet new insights at the molecular level are becoming available that might greatly benefit our understanding. Fertility preservation options have expanded, and treatments to mitigate this complication either by directly rescuing the metabolic defect or by influencing the cascade of events are being explored. OBJECTIVE AND RATIONALE: The aims are to review: the clinical picture and the need to revisit the counseling paradigm; insights into the onset and mechanism of damage at the molecular level; and current treatments to mitigate ovarian damage. SEARCH METHODS: In addition to the work on this topic by the authors, the PubMed database has been used to search for peer-reviewed articles and reviews using the following terms: 'classic galactosemia', 'gonadal damage', 'primary ovarian insufficiency', 'fertility', 'animal models' and 'fertility preservation' in combination with other keywords related to the subject area. All relevant publications until August 2022 have been critically evaluated and reviewed. OUTCOMES: A diagnosis of premature ovarian insufficiency (POI) results in a significant psychological burden with a high incidence of depression and anxiety that urges adequate counseling at an early stage, appropriate treatment and timely discussion of fertility preservation options. The cause of POI in CG is unknown, but evidence exists of dysregulation in pathways crucial for folliculogenesis such as phosphatidylinositol 3-kinase/protein kinase B, inositol pathway, mitogen-activated protein kinase, insulin-like growth factor-1 and transforming growth factor-beta signaling. Recent findings from the GalT gene-trapped (GalTKO) mouse model suggest that early molecular changes in 1-month-old ovaries elicit an accelerated growth activation and burnout of primordial follicles, resembling the progressive ovarian failure seen in patients. Although data on safety and efficacy outcomes are still limited, ovarian tissue cryopreservation can be a fertility preservation option. Treatments to overcome the genetic defect, for example nucleic acid therapy such as mRNA or gene therapy, or that influence the cascade of events are being explored at the (pre-)clinical level. WIDER IMPLICATIONS: Elucidation of the molecular pathways underlying POI of any origin can greatly advance our insight into the pathogenesis and open new treatment avenues. Alterations in these molecular pathways might serve as markers of disease progression and efficiency of new treatment options.


Subject(s)
Galactosemias , Hypogonadism , Infertility , Pregnancy , Animals , Mice , Female , Humans , Galactosemias/diagnosis , Galactosemias/genetics , Galactosemias/metabolism , Fertility/physiology , Infertility/metabolism , Ovary/physiology , Hypogonadism/complications
5.
Orphanet J Rare Dis ; 17(1): 331, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056436

ABSTRACT

BACKGROUND: Galactose epimerase (GALE) deficiency is a rare hereditary disorder of galactose metabolism with only a few cases described in the literature. This study aims to present the data of patients with GALE deficiency from different countries included through the Galactosemia Network to further expand the existing knowledge and review the current diagnostic strategy, treatment and follow-up of this not well characterized entity. METHODS: Observational study collecting medical data from December 2014 to April 2022 of 22 not previously reported patients from 14 centers in 9 countries. Patients were classified as generalized or non-generalized based on their genotype, enzyme activities in different tissues and/or clinical picture and professional judgment of the treating physician. RESULTS: In total 6 patients were classified as generalized and 16 as non-generalized. In the generalized group, acute neonatal illness was reported in 3, cognitive and developmental delays were present in 5 and hearing problems were reported in 3. Four generalized patients were homozygous for the genetic variant NM_001008216.2:c.280G > A (p.Val94Met). In the non-generalized group, no clearly related symptoms were found. Ten novel genetic variants were reported in this study population. CONCLUSION: The phenotypic spectrum of GALE deficiency ranges from asymptomatic to severe. The generalized patients have a phenotype that is in line with the 9 described cases in the literature and prescribing dietary interventions is the cornerstone for treatment. In the non-generalized group, treatment advice is more difficult. To be able to offer proper counseling, in addition to red blood cell enzyme activity, genetic studies, transferrin glycoform analysis and enzymatic measurements in fibroblasts are recommended. Due to lack of facilities, additional enzymatic testing is not common practice in many centers nor a tailored long-term follow-up is performed.


Subject(s)
Galactosemias , Galactosemias/genetics , Galactosemias/metabolism , Genotype , Homozygote , Humans , Registries , UDPglucose 4-Epimerase/genetics , UDPglucose 4-Epimerase/metabolism
6.
J Inherit Metab Dis ; 45(6): 1106-1117, 2022 11.
Article in English | MEDLINE | ID: mdl-36093991

ABSTRACT

Patients with galactosemia who carry the S135L (c.404C > T) variant of galactose-1-P uridylyltransferase (GALT), documented to encode low-level residual GALT activity, have been under-represented in most prior studies of outcomes in Type 1 galactosemia. What is known about the acute and long-term outcomes of these patients, therefore, is based on very limited data. Here, we present a study comparing acute and long-term outcomes of 12 patients homozygous for S135L, 25 patients compound heterozygous for S135L, and 105 patients homozygous for two GALT-null (G) alleles. This is the largest cohort of S135L patients characterized to date. Acute disease following milk exposure in the newborn period was common among patients in all 3 comparison groups in our study, as were long-term complications in the domains of speech, cognition, and motor outcomes. In contrast, while at least 80% of both GALT-null and S135L compound heterozygous girls and women showed evidence of an adverse ovarian outcome, prevalence was only 25% among S135L homozygotes. Further, all young women in this study with even one copy of S135L achieved spontaneous menarche; this is true for only about 33% of women with classic galactosemia. Overall, we observed that while most long-term outcomes trended milder among groups of patients with even one copy of S135L, many individual patients, either homozygous or compound heterozygous for S135L, nonetheless experienced long-term outcomes that were not mild. This was true despite detection by newborn screening and both early and life-long dietary restriction of galactose. This information should empower more evidence-based counseling for galactosemia patients with S135L.


Subject(s)
Galactosemias , Female , Humans , Infant, Newborn , Alleles , Galactose , Galactosemias/genetics , Galactosemias/diagnosis , Homozygote , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics
7.
Mol Genet Metab ; 134(1-2): 132-138, 2021.
Article in English | MEDLINE | ID: mdl-34391645

ABSTRACT

Duarte galactosemia is not classic galactosemia, but rather an example of biochemical variant galactosemia that results in approximately 25% residual activity of galactose-1-phosphate uridylyltransferase (GALT) enzyme. In contrast, classic galactosemia is associated with complete or near complete absence of GALT activity. While infants with classic galactosemia are placed on galactose-restricted diets to prevent the acute and long-term manifestations of their metabolic disorder, while individuals with Duarte variant galactosemia (Duarte-2 galactosemia) do not require diet therapy. The long-term complications that are seen in classic galactosemia such as cerebellar ataxia, and hypergonadotropic hypogonadism do not occur in Duarte-2 galactosemia. While Duarte galactosemia does not appear to be a metabolic disease, it may have an impact on early neurodevelopmental outcomes. This study examined developmental outcomes and the need for special services in individuals with Duarte-2 galactosemia in comparison to individuals with classic galactosemia. We performed a medical record review of individuals with GALT deficiency who were evaluated at Boston Children's Hospital and enrolled in our study of outcomes in galactosemia. This included 95 participants, 21 with Duarte-2 galactosemia and 73 with classic galactosemia. Duarte-2 participants had developmental test scores within the average range. However, 42% of subjects with Duarte-2 galactosemia had participated in early intervention and/or special education and 32% received speech therapy. Their pattern of strengths and weaknesses in cognitive/language/motor domains was similar to that noted in participants with classic galactosemia, albeit to a milder degree. The data indicate that in children with Duarte-2 variant galactosemia, the cognitive/language and motor skills were within normal limits with their cognitive/language skills developing earlier than their motor skills during their first year of life. A history of diet treatment was not related to the use of special services. These results suggest that Duarte-2 galactosemia increases the risk for early mild developmental delays irrespective of treatment history, which resolves over time, and highlights the need to further assess neurodevelopment in early infancy, in Duarte-2 galactosemia. As Duarte-2 galactosemia is not a bona fide biochemical genetic disease, we hypothesize that elements in the genomic space that include the GALT gene are responsible for a transient delay in language-related motor skills during early infancy.


Subject(s)
Alleles , Child Development , Galactosemias/classification , Galactosemias/genetics , Genetic Variation , Child, Preschool , Female , Galactosemias/physiopathology , Genotype , Humans , Infant , Male , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Phenotype , Retrospective Studies , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics
8.
JIMD Rep ; 59(1): 104-109, 2021 May.
Article in English | MEDLINE | ID: mdl-33977035

ABSTRACT

Galactokinase deficiency is an inborn error of carbohydrate metabolism due to a block in the formation of galactose-1-phosphate from galactose. Although the association of galactokinase deficiency with formation of cataracts is well established, the extent of the clinical phenotype is still under investigation. We describe a 6-year-old female who was diagnosed with galactokinase deficiency due to cataract formation when she was 10 months of age and initially started on galactose-restricted diet at that time for 5 months. She developed gait abnormality at 4 years of age. Breath tests via measurement of 13C isotope in exhaled carbon dioxide following 13C-labeled galactose administration at carbon-1 and carbon-2 positions revealed oxidation rates within the normal range. The results in this patient strikingly contrast with the results of another patient with GALK1 deficiency that underwent breath testing with [1-14C]-galactose and [2-14C]-galactose. Extension of in vivo breath tests to other galactokinase patients is needed to better understand the pathophysiology of this disease.

9.
Genet Med ; 23(1): 202-210, 2021 01.
Article in English | MEDLINE | ID: mdl-32807972

ABSTRACT

PURPOSE: Galactokinase (GALK1) deficiency is a rare hereditary galactose metabolism disorder. Beyond cataract, the phenotypic spectrum is questionable. Data from affected patients included in the Galactosemias Network registry were collected to better characterize the phenotype. METHODS: Observational study collecting medical data of 53 not previously reported GALK1 deficient patients from 17 centers in 11 countries from December 2014 to April 2020. RESULTS: Neonatal or childhood cataract was reported in 15 and 4 patients respectively. The occurrence of neonatal hypoglycemia and infection were comparable with the general population, whereas bleeding diathesis (8.1% versus 2.17-5.9%) and encephalopathy (3.9% versus 0.3%) were reported more often. Elevated transaminases were seen in 25.5%. Cognitive delay was reported in 5 patients. Urinary galactitol was elevated in all patients at diagnosis; five showed unexpected Gal-1-P increase. Most patients showed enzyme activities ≤1%. Eleven different genotypes were described, including six unpublished variants. The majority was homozygous for NM_000154.1:c.82C>A (p.Pro28Thr). Thirty-five patients were diagnosed following newborn screening, which was clearly beneficial. CONCLUSION: The phenotype of GALK1 deficiency may include neonatal elevation of transaminases, bleeding diathesis, and encephalopathy in addition to cataract. Potential complications beyond the neonatal period are not systematically surveyed and a better delineation is needed.


Subject(s)
Cataract , Galactokinase/deficiency , Galactosemias , Galactokinase/genetics , Galactosemias/epidemiology , Galactosemias/genetics , Homozygote , Humans , Infant, Newborn , Registries
10.
JIMD Rep ; 54(1): 3-8, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32685343

ABSTRACT

Cardiomyopathy is a frequent complication of propionic acidemia (PA). It is often fatal, and its occurrence is largely independent of classic metabolic treatment modalities. Liver transplantation (LT) is a treatment option for severe PA as the liver plays a vital role in metabolism of the precursors that accumulate in patients with PA. LT in PA is now considered to be a long-lasting and valid treatment to prevent cardiac disease. The subject of this report had severe cardiomyopathy that largely disappeared prior to undergoing a LT. Three years following the transplant, there was recurrence of cardiomyopathy following a surgery that was complicated with a postoperative aspiration pneumonia. On his last hospital admission, he was presented with pulmonary edema and heart failure. He continued with episodes of intractable hypotension, despite maximum inotropic and diuretic support. He died following redirection of care. We conclude that lethal cardiomyopathy may develop several years after successful LT in patients with PA.

11.
JIMD Rep ; 48(1): 26-35, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31392110

ABSTRACT

Congenital lactic acidosis due to pyruvate dehydrogenase phosphatase (PDP) deficiency is very rare. PDP regulates pyruvate dehydrogenase complex (PDC) and defective PDP leads to PDC deficiency. We report a case with functional PDC deficiency with low activated (+dichloroacetate) and inactivated (+fluoride) PDC activities in lymphocytes and fibroblasts, normal activity of other mitochondrial enzymes in fibroblasts, and novel biallelic frameshift mutation in the PDP1 gene, c.575dupT (p.L192FfsX5), with absent PDP1 product in fibroblasts. Unexpectedly, the patient also had low branched-chain 2-ketoacid dehydrogenase (BCKDH) activity in fibroblasts with slight elevation of branched-chain amino acids in plasma and ketoacids in urine but with no pathogenic mutations in the enzymes of BCKDH, which could suggest shared regulatory function of PDC and BCKDH in fibroblasts, potentially in other tissues or cell types as well, but this remains to be determined. The clinical presentation of this patient overlaps that of other patients with primary-specific PDC deficiency, with neonatal/infantile and childhood lactic acidosis, normal lactate to pyruvate ratio, elevated plasma alanine, delayed psychomotor development, epileptic encephalopathy, feeding difficulties, and hypotonia. This patient exhibited marked improvement of overall development following initiation of ketogenic diet at 31 months of age. To the best of our knowledge, this is the fourth case of functional PDC deficiency with a defined mutation in PDP1. SYNOPSIS: Pyruvate dehydrogenase phosphatase (PDP) regulates pyruvate dehydrogenase complex (PDC) and defective PDP due to PDP1 mutations leads to PDC deficiency and congenital lactic acidosis.

12.
JIMD Rep ; 46(1): 63-69, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31240156

ABSTRACT

Succinyl-CoA synthetase or succinate-CoA ligase deficiency can result from biallelic mutations in SUCLG1 gene that encodes for the alpha subunit of the succinyl-CoA synthetase. Mutations in this gene were initially associated with fatal infantile lactic acidosis. We describe an individual with a novel biallelic pathogenic mutation in SUCLG1 with a less severe phenotype dominated by behavioral problems. The mutation was identified to be c.512A>G corresponding to a p.Asn171Ser change in the protein. The liquid chromatography tandem mass spectrometry-based enzyme activity assay on cultured fibroblasts revealed a markedly reduced activity of succinyl-CoA synthetase enzyme when both ATP and GTP were substrates, affecting both ADP-forming and GDP-forming functions of the enzyme.

13.
Mol Genet Metab ; 126(4): 368-376, 2019 04.
Article in English | MEDLINE | ID: mdl-30718057

ABSTRACT

BACKGROUND: GALT deficiency is a rare genetic disorder of carbohydrate metabolism. Due to the decreased activity or absence of the enzyme galactose-1-phosphate uridylyltransferase (GALT), cells from affected individuals are unable to metabolize galactose normally. Lactose consumption in the newborn period could potentially lead to a lethal disease process with multi-organ involvement. In contrast to the newborn-stage disease, however, a galactose-restricted diet does not prevent long-term complications such as central nervous system (CNS) dysfunction with speech defects, learning disability and neurological disease in addition to hypergonadotropic hypogonadism or primary ovarian insufficiency (POI) in females. As the literature suggests an association between GALT enzyme activity and the long-term complications, it is of importance to have a highly sensitive assay to quantify the GALT enzyme activity. To that end, we had developed a sensitive and accurate LC-MS/MS method to measure GALT enzyme activity. Its ability to predict outcome is the subject of this report. MATERIALS AND METHODS: The GALT enzyme activity in erythrocytes from 160 individuals, in which 135 with classic, clinical variant or biochemical variant galactosemia, was quantified by LC-MS/MS. Individuals with GALT deficiency were evaluated for the long-term complications of speech defects, dysarthria, ataxia, dystonia, tremor, POI, as well as intellectual functioning (full scale IQ). The LC-MS/MS results were compared to a variety of assays: radioactive, [14C]-galactose-1-phosphate, paper chromatography with scintillation counting, enzyme-coupled assays with spectrophotometric or fluorometric readout or high-pressure liquid chromatography with UV detection of UDP-galactose. RESULTS: The LC-MS/MS method measured GALT activity as low as 0.2%, whereas other methods showed no detectable activity. Largely due to GALT activities that were over 1%, the LC-MS/MS measurements were not significantly different than values obtained in other laboratories using other methodologies. Severe long-term complications were less frequently noted in subjects with >1% activity. Patients with a p.Q188R/p.Q188R genotype have no residual enzyme activity in erythrocytes. CONCLUSION: Our LC-MS/MS assay may be necessary to accurately quantify residual GALT activities below 5%. The data suggest that patients with >1% residual activity are less likely to develop diet-independent long-term complications. However, much larger sample sizes are needed to properly assess the clinical phenotype in patients with residual enzyme activities between 0.1 and 5%.


Subject(s)
Erythrocytes/enzymology , Galactosemias/diagnosis , UTP-Hexose-1-Phosphate Uridylyltransferase/blood , Adolescent , Adult , Aged , Child , Child, Preschool , Enzyme Assays , Female , Galactose/metabolism , Humans , Infant , Male , Middle Aged , Phenotype , Retrospective Studies , Sensitivity and Specificity , Tandem Mass Spectrometry , Young Adult
14.
Orphanet J Rare Dis ; 13(1): 212, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30477550

ABSTRACT

BACKGROUND: Classic galactosemia is a rare genetic metabolic disease with an unmet treatment need. Current standard of care fails to prevent chronically-debilitating brain and gonadal complications. Many mutations in the GALT gene responsible for classic galactosemia have been described to give rise to variants with conformational abnormalities. This pathogenic mechanism is highly amenable to a therapeutic strategy based on chemical/pharmacological chaperones. Arginine, a chemical chaperone, has shown beneficial effect in other inherited metabolic disorders, as well as in a prokaryotic model of classic galactosemia. The p.Q188R mutation presents a high prevalence in the Caucasian population, making it a very clinically relevant mutation. This mutation gives rise to a protein with lower conformational stability and lower catalytic activity. The aim of this study is to assess the potential therapeutic role of arginine for this mutation. METHODS: Arginine aspartate administration to four patients with the p.Q188R/p.Q188R mutation, in vitro studies with three fibroblast cell lines derived from classic galactosemia patients as well as recombinant protein experiments were used to evaluate the effect of arginine in galactose metabolism. This study has been registered at https://clinicaltrials.gov (NCT03580122) on 09 July 2018. Retrospectively registered. RESULTS: Following a month of arginine administration, patients did not show a significant improvement of whole-body galactose oxidative capacity (p = 0.22), erythrocyte GALT activity (p = 0.87), urinary galactose (p = 0.52) and urinary galactitol levels (p = 0.41). Patients' fibroblasts exposed to arginine did not show changes in GALT activity. Thermal shift analysis of recombinant p.Q188R GALT protein in the presence of arginine did not exhibit a positive effect. CONCLUSIONS: This short pilot study in four patients homozygous for the p.Q188R/p.Q188R mutation reveals that arginine has no potential therapeutic role for galactosemia patients homozygous for the p.Q188R mutation.


Subject(s)
Arginine/therapeutic use , Galactosemias/drug therapy , Galactosemias/genetics , Mutation/genetics , Aspartic Acid/therapeutic use , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Galactose/metabolism , Humans , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/genetics , Retrospective Studies
16.
Mol Genet Metab ; 125(1-2): 118-126, 2018 09.
Article in English | MEDLINE | ID: mdl-30031689

ABSTRACT

Folate metabolism in the brain is critically important and serves a number of vital roles in nucleotide synthesis, single carbon metabolism/methylation, amino acid metabolism, and mitochondrial translation. Genetic defects in almost every enzyme of folate metabolism have been reported to date, and most have neurological sequelae. We report 2 patients presenting with a neurometabolic disorder associated with biallelic variants in the MTHFS gene, encoding 5,10-methenyltetrahydrofolate synthetase. Both patients presented with microcephaly, short stature, severe global developmental delay, progressive spasticity, epilepsy, and cerebral hypomyelination. Baseline CSF 5-methyltetrahydrolate (5-MTHF) levels were in the low-normal range. The first patient was treated with folinic acid, which resulted in worsening cerebral folate deficiency. Treatment in this patient with a combination of oral L-5-methyltetrahydrofolate and intramuscular methylcobalamin was able to increase CSF 5-MTHF levels, was well tolerated over a 4 month period, and resulted in subjective mild improvements in functioning. Measurement of MTHFS enzyme activity in fibroblasts confirmed reduced activity. The direct substrate of the MTHFS reaction, 5-formyl-THF, was elevated 30-fold in patient fibroblasts compared to control, supporting the hypothesis that the pathophysiology of this disorder is a manifestation of toxicity from this metabolite.


Subject(s)
Amino Acid Transport Systems, Acidic/deficiency , Antiporters/deficiency , Carbon-Nitrogen Ligases/genetics , Epilepsy/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Microcephaly/genetics , Mitochondrial Diseases/genetics , Psychomotor Disorders/genetics , Amino Acid Transport Systems, Acidic/cerebrospinal fluid , Amino Acid Transport Systems, Acidic/genetics , Amino Acid Transport Systems, Acidic/metabolism , Antiporters/cerebrospinal fluid , Antiporters/genetics , Antiporters/metabolism , Brain/metabolism , Brain/pathology , Carbon-Nitrogen Ligases/cerebrospinal fluid , Carbon-Nitrogen Ligases/deficiency , Carbon-Nitrogen Ligases/metabolism , Epilepsy/cerebrospinal fluid , Epilepsy/complications , Epilepsy/pathology , Female , Folate Receptor 1/deficiency , Hereditary Central Nervous System Demyelinating Diseases/cerebrospinal fluid , Hereditary Central Nervous System Demyelinating Diseases/complications , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Humans , Male , Metabolic Diseases/cerebrospinal fluid , Metabolic Diseases/complications , Metabolic Diseases/genetics , Metabolic Diseases/pathology , Microcephaly/cerebrospinal fluid , Microcephaly/complications , Microcephaly/pathology , Mitochondrial Diseases/cerebrospinal fluid , Mitochondrial Diseases/complications , Mitochondrial Diseases/metabolism , Nervous System Malformations/cerebrospinal fluid , Nervous System Malformations/complications , Nervous System Malformations/genetics , Nervous System Malformations/metabolism , Neuroaxonal Dystrophies , Psychomotor Disorders/cerebrospinal fluid , Psychomotor Disorders/complications , Psychomotor Disorders/metabolism , Tetrahydrofolates/cerebrospinal fluid , Tetrahydrofolates/metabolism
17.
Pediatr Clin North Am ; 65(2): 337-352, 2018 04.
Article in English | MEDLINE | ID: mdl-29502917

ABSTRACT

The liver is one of the most essential organs in metabolism and is responsible for metabolizing a wide variety of molecules from amino acids to sugars. Although it is responsible for many essential metabolic processes, it is one of the most severely affected by metabolic disease because, in many cases, it is the first to be exposed to the toxic intermediates. The metabolism of galactose, fructose, and tyrosine involve the liver and although there are systemic findings in metabolic disease involved with these substrates, severe hepatopathy is a common presenting aspect of galactosemia, hereditary fructose intolerance, and tyrosinemia type I.


Subject(s)
Liver Diseases/etiology , Metabolism, Inborn Errors/diagnosis , Fructose/metabolism , Galactose/metabolism , Humans , Infant, Newborn , Liver/pathology , Liver Diseases/therapy , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/therapy , Tyrosine/metabolism
18.
Metabolism ; 83: 188-196, 2018 06.
Article in English | MEDLINE | ID: mdl-29409891

ABSTRACT

Hereditary galactosemia is an inborn error of carbohydrate metabolism. Galactose is metabolized by Leloir pathway enzymes; galactokinase (GALK), galactose-1-phosphate uridylyltransferase (GALT) and UDP-galactose 4-epimerase (GALE). The defects in these enzymes cause galactosemia in an autosomal recessive manner. The severe GALT deficiency, or classic galactosemia, is life-threatening in the newborn period. The treatment for classic galactosemia is dietary restriction of lactose. Although implementation of lactose restricted diet is efficient in resolving the acute complications, it is not sufficient to prevent long-term complications affecting the brain and female gonads, the two main target organs of damage. Implementation of molecular genetics diagnostic tools and GALT enzyme assays are instrumental in distinguishing classic galactosemia from clinical and biochemical variant forms of GALT deficiency. Better understanding of mechanisms responsible for the phenotypic variation even within the same genotype is essential to provide appropriate counseling for families. Utilization of a lactose restricted diet is also recommended for GALK deficiency and some rare forms of GALE deficiency. Novel modes of therapies are being explored; they may be beneficial if access issues to the affected tissues are circumvented and optimum use of therapeutic window is achieved.


Subject(s)
Galactosemias/genetics , Female , Galactokinase/genetics , Galactokinase/metabolism , Galactose/metabolism , Galactosemias/diagnosis , Galactosemias/metabolism , Galactosemias/therapy , Genetic Counseling , Genetic Predisposition to Disease , Genotype , Humans , Infant, Newborn , UDPglucose 4-Epimerase/genetics , UDPglucose 4-Epimerase/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism
19.
Mol Genet Metab ; 120(3): 213-222, 2017 03.
Article in English | MEDLINE | ID: mdl-27913098

ABSTRACT

Mutations in SUCLA2 result in succinyl-CoA ligase (ATP-forming) or succinyl-CoA synthetase (ADP-forming) (A-SCS) deficiency, a mitochondrial tricarboxylic acid cycle disorder. The phenotype associated with this gene defect is largely encephalomyopathy. We describe two siblings compound heterozygous for SUCLA2 mutations, c.985A>G (p.M329V) and c.920C>T (p.A307V), with parents confirmed as carriers of each mutation. We developed a new LC-MS/MS based enzyme assay to demonstrate the decreased SCS activity in the siblings with this unique genotype. Both siblings shared bilateral progressive hearing loss, encephalopathy, global developmental delay, generalized myopathy, and dystonia with choreoathetosis. Prior to diagnosis and because of lactic acidosis and low activity of muscle pyruvate dehydrogenase complex (PDC), sibling 1 (S1) was placed on dichloroacetate, while sibling 2 (S2) was on a ketogenic diet. S1 developed severe cyclic vomiting refractory to therapy, while S2 developed Leigh syndrome, severe GI dysmotility, intermittent anemia, hypogammaglobulinemia and eventually succumbed to his disorder. The mitochondrial DNA contents in skeletal muscle (SM) were normal in both siblings. Pyruvate dehydrogenase complex, ketoglutarate dehydrogenase complex, and several mitochondrial electron transport chain (ETC) activities were low or at the low end of the reference range in frozen SM from S1 and/or S2. In contrast, activities of PDC, other mitochondrial enzymes of pyruvate metabolism, ETC and, integrated oxidative phosphorylation, in skin fibroblasts were not significantly impaired. Although we show that propionyl-CoA inhibits PDC, it does not appear to account for decreased PDC activity in SM. A better understanding of the mechanisms of phenotypic variability and the etiology for tissue-specific secondary deficiencies of mitochondrial enzymes of oxidative metabolism, and independently mitochondrial DNA depletion (common in other cases of A-SCS deficiency), is needed given the implications for control of lactic acidosis and possible clinical management.


Subject(s)
Mitochondrial Diseases/genetics , Muscle, Skeletal/enzymology , Polymorphism, Single Nucleotide , Succinate-CoA Ligases/deficiency , Adolescent , Child , DNA, Mitochondrial/genetics , Fatal Outcome , Humans , Male , Mitochondrial Diseases/enzymology , Muscle, Skeletal/metabolism , Sequence Deletion , Siblings , Succinate-CoA Ligases/genetics
20.
Nat Biotechnol ; 33(1): 58-63, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25437882

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV), episomal (Epi) and mRNA transfection mRNA methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...